Identification of an apical Cl-/HCO-3 exchanger in rat kidney proximal tubule.
نویسندگان
چکیده
SLC26A6 (or putative anion transporter 1, PAT1) is located on the apical membrane of mouse kidney proximal tubule and mediates Cl-/HCO3- exchange in in vitro expression systems. We hypothesized that PAT1 along with a Cl-/HCO3- exchange is present in apical membranes of rat kidney proximal tubules. Northern hybridizations indicated the exclusive expression of SLC26A6 (PAT1 or CFEX) in rat kidney cortex, and immunocytochemical staining localized SLC26A6 on the apical membrane of proximal tubules, with complete prevention of the labeling with the preadsorbed serum. To examine the functional presence of apical Cl-/HCO3- exchanger, proximal tubules were isolated, microperfused, loaded with the pH-sensitive dye BCPCF-AM, and examined by digital ratiometric imaging. The pH of the perfusate and bath was kept at 7.4. Buffering capacity was measured, and transport rates were calculated as equivalent base flux. The results showed that in the presence of basolateral DIDS (to inhibit Na+-HCO3- cotransporter 1) and apical EIPA (to inhibit Na+/H+ exchanger 3), the magnitude of cell acidification in response to addition of luminal Cl- was approximately 5.0-fold higher in the presence than in the absence of CO2/HCO3-. The Cl--dependent base transport was inhibited by approximately 61% in the presence of 0.5 mM luminal DIDS. The presence of physiological concentrations of oxalate in the lumen (200 microM) did not affect the Cl-/HCO3- exchange activity. These results are consistent with the presence of SLC26A6 (PAT1) and Cl-/HCO3- exchanger activity in the apical membrane of rat kidney proximal tubule. We propose that SLC26A6 is likely responsible for the apical Cl-/HCO3- (and Cl-/OH-) exchanger activities in kidney proximal tubule.
منابع مشابه
Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1.
We report the molecular and functional characterization of murine Slc26a6, the putative apical chloride-formate exchanger of the proximal tubule. The Slc26a6 transcript is expressed in several tissues, including kidney. Alternative splicing of the second exon generates two distinct isoforms, denoted Slc26a6a and Slc26a6b, which differ in the inclusion of a 23-residue NH(2)-terminal extension. F...
متن کاملActivation of the apical Na+/H+ exchanger NHE3 by formate: a basis of enhanced fluid and electrolyte reabsorption by formate in the kidney.
Formate stimulates sodium chloride and fluid reabsorption in kidney proximal tubule; however, the exact cellular mechanism of this effect remains unknown. We hypothesized that the primary target of formate is the apical Na(+)/H(+) exchanger. Here, we demonstrate that formate directly enhances the apical Na(+)/H(+) exchanger (NHE3) activity in mouse kidney proximal tubule. In the absence of CO(2...
متن کاملDeletion of the anion exchanger Slc26a4 (pendrin) decreases apical Cl(-)/HCO3(-) exchanger activity and impairs bicarbonate secretion in kidney collecting duct.
The anion exchanger Pendrin, which is encoded by SLC26A4 (human)/Slc26a4 (mouse) gene, is localized on the apical membrane of non-acid-secreting intercalated (IC) cells in the kidney cortical collecting duct (CCD). To examine its role in the mediation of bicarbonate secretion in vivo and the apical Cl(-)/HCO(3)(-) exchanger in the kidney CCD, mice with genetic deletion of pendrin were generated...
متن کاملSpecificity of anion exchange mediated by mouse Slc26a6.
Recently, CFEX, the mouse orthologue of human SLC26A6, was localized to the brush border membrane of proximal tubule cells and was demonstrated to mediate Cl(-)-formate exchange when expressed in Xenopus oocytes. The purpose of the present study was to examine whether mouse Slc26a6 can mediate one or more of the additional anion exchange processes observed to take place across the apical membra...
متن کاملThyroid hormone deficiency alters expression of acid-base transporters in rat kidney.
Hypothyroidism in humans is associated with incomplete distal renal tubular acidosis, presenting as the inability to respond appropriately to an acid challenge by excreting less acid. Here, we induced hypothyroidism in rats with methimazole (HYPO) and in one group substituted with l-thyroxine (EU). After 4 wk, acid-base status was similar in both groups. However, after 24 h acid loading with NH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 285 3 شماره
صفحات -
تاریخ انتشار 2003